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ABSTRACT
In an era that will increasingly depend upon lifelong learning, the
LA community will need to facilitate the movement and sharing of
data and information across institutional and geographic bound-
aries. This will help us to recognise prior learning (RPL) and to
personalise the learner experience. Here, we explore the utility of
skills-based curriculum analytics and how it might facilitate the
process of awarding RPL between two institutions. We explore
the potential utility of combining natural language processing and
skills taxonomies to map between subject descriptions for these
two different institutions, presenting two algorithms we have de-
veloped to facilitate RPL and evaluating their performance. We
draw attention to some of the issues that arise, listing areas that we
consider ripe for future work in a surprisingly underexplored area.

CCS CONCEPTS
• Information systems → Document collection models; On-
tologies; Data exchange; Decision support systems.

KEYWORDS
curriculum analytics, lifelong learning, recognition of prior learning,
semantic spaces, skills ontologies

ACM Reference Format:
Kirsty Kitto, Nikhil Sarathy, Aleksandr Gromov, Ming Liu, KatarzynaMusial,
and Simon Buckingham Shum. 2020. Towards Skills-based Curriculum Ana-
lytics: Can we automate the recognition of prior learning?. In Proceedings
of the 10th International Conference on Learning Analytics and Knowledge
(LAK ’20), March 23–27, 2020, Frankfurt, Germany. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3375462.3375526

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LAK ’20, March 23–27, 2020, Frankfurt, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7712-6/20/03. . . $15.00
https://doi.org/10.1145/3375462.3375526

1 LIFELONG LEARNING
The modern conceptualisation of employment is rapidly shifting.
While our parents planned to work for the same company for life,
our children can expect to change career many times [1]. Rather
than completing a set amount of schooling early in life to achieve
a qualification, the 4th industrial revolution [2] means that peo-
ple will increasingly need to return to the education sector: (i) for
further training to enhance a skill base (ii) to gain new skills as
their field is disrupted by technology, or (iii) to reskill so that they
might transition into new careers. In this context, helping students
to achieve success becomes a project in lifelong learning [21]. How-
ever, the problem of data transferability raised by Ryan Baker in
his LAK’19 keynote1 quickly emerges within this context.

How might the field of Learning Analytics (LA) work to sup-
port a more seamless movement of learning data across a lifetime
of learning? Numerous barriers exist when we start to consider
this scenario, such as, data interoperability [15], the ethics of data
privacy vs access [24], institutional silos [23], and political and stan-
dards based discrepancies across different nations [16]. Here, we
will focus upon transfer credit and the recognition of prior learning
in higher education, considering ways in which LA might help us
work towards at least semi-automating a process that is known to
be a resource intensive bottleneck for many universities [16]. We
will start with a consideration of the problem.

1.1 The recognition of prior learning
What happens when a student attempts to change from one study
pathway to another? They might be moving from a degree of-
fered at one institution to another university, or perhaps they are
applying for admission into a Masters degree. How can the new
institution be sure that the student has indeed satisfied any require-
ments associated with this transfer? Some institutions will offer
prior credit for a selection of courses, enabling students to complete
their studies faster, or to study more advanced courses due to a
waiving of pre-requisites. However, determining whether a student
has indeed satisfied the required level of expertise is a non trivial
exercise. Considerable effort is often devoted to testing students

1https://www.youtube.com/watch?v=DDhPa6lVogY
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upon entry, or to employing a workforce to manually map com-
petencies between various, constantly changing, degree programs.
Sometimes this mapping enables automatic recognition from pre-
specified pathways, but it often involves chasing down previous
completion requirements for new applicants on a case by case ba-
sis, an extremely resource intensive task. This problem is further
exacerbated in a lifelong learning context. Consider the increas-
ing numbers of people who are now starting to return to higher
education, often after years of work experience and substantial pro-
fessional development — how are their skills and competencies to
be verified? People re-entering education from the workforce often
have a strong portfolio of work that can be used in the recognition
of prior learning (RPL) [16], but this creates even more logistical
challenges than the problem of granting credit transfer. Portfolios
of work are rarely shared across institutions, and it is rare to see
curriculum details made publicly available, let alone assessment
details. Similarly, companies seldom release details of staff training
programs. This siloing of data makes the job of those working to
validate claims for recognition of learning particularly difficult. And
even when curriculum information is available, it is difficult to com-
pare the training received in one environment with that obtained
in another. Micro-credentials and badges are often presented as a
possible future solution to this problem [17] but this solution still
requires a mapping of those badges into various institutional path-
ways.2 Similarly, blockchain has been mooted as a mechanism for
granting credit [14] but a similar problem of mapping any credential
between institutions remains.

In what follows we will refer to all of these problems under the
broad banner of RPL, while recognising that this is a slight abuse of
a term that is usually applied to the problem of providing credit to
people who are seeking to re-enter formal study from the workforce.
While the problem of RPL has long been acknowledged, we consider
it likely that lifelong learning will lead to a growing expectation
that institutions can efficiently award RPL. However, as is well
documented in critical infrastructure studies [6], the challenge of
achieving common ground to describe curriculum should not be
under-estimated. What solutions have been proposed?

1.2 Are graduate attributes a solution?
A wide range of education sectors around the world have used
qualification frameworks to make graduate attributes portable be-
yond the institution in which they were recognised. Competency
frameworks consisting of lists of graduate attributes have been
released by a number of national bodies, such as the Australian
Qualifications Framework (AQF), Scottish Credit and Qualifications
Framework (SCQF), and the German Qualifications Framework
(Deutsche Qualifikationsrahmen, DQR) at the national level, and
the European Qualifications Framework (EQF) at a regional level
[22]. At the institutional level, we often see various mappings pro-
posed between: assessment of learning outcomes in different do-
mains [37]; curriculum and content [4, 18]; and graduate attributes
[38]. However, it is costly to both manually create and maintain
these mappings, meaning they can rapidly lose their relevance as
the content of a course changes over time. Even more problematic,

2Although we note that Badgr pathways holds promise for detailing these mappings —
see https://www.concentricsky.com/articles/detail/introducing-badgr-pathways.

there is no universal qualifications framework, which means that
different jurisdictions describe graduate capabilities in different
ways. Consequently, while graduate attributes (GA) are an impor-
tant part of describing student capabilities at an institutional level,
they fail to solve the challenge of sector wide RPL.

1.3 Contribution
Here, we investigate the potential of combining Natural language
processing (NLP) with a defined skills ontology to work towards at
least partial automation of the RPL process. The contribution of this
paper is twofold: (i) First, we provide two approaches that can be
used to map between publicly available subject descriptions. (ii) Sec-
ond, we provide two methods for evaluating the resulting mappings.
This will help to further compare methods as our approach matures.

Some work has been attempted in this direction previously, and
will be discussed in Section 2, where we will see that it has tended
to be restricted to a particular sub-domain or field of knowledge.
Section 3 will present a series of Proof of Concept (PoC) experi-
ments investigating possibilities for mapping between curricula
obtained from two different higher educational institutions. This
section will also discuss the evaluation framework we have used
to judge the success of the resultant mappings. We will finish with
an consideration of promising avenues for future work in this new
emerging sub-field of curriculum analytics (Section 4).

2 AUTOMATIC CURRICULUMMAPPING
Some early efforts to map curriculum into ontologies was com-
pleted in the program of work that sought to represent shareable
and reusable learning objects (LOs) using ontologies (by e.g. Ver-
bert et al. [40], and Gašević et al. [10]). However, this approach
relied upon human effort to perform annotation of the LOs, and
has largely halted. It is worthwhile considering why such a poten-
tially useful practice never obtained widespread adoption. Firstly, it
appears that too much extra effort was required to complete these
mappings by hand, secondly, Verborgh and Vander Sande [41] sug-
gests that the messiness of the open world wide web has meant that
terms consistently map to contradictory meanings, and different
terms are used for the same object, making it difficult to maintain
a consistent mapping as the knowledge domain increases in size.
While some fields have well defined knowledge structures that can
be mapped into largely uncontroversial taxonomies (e.g. mathemat-
ics and physics) this is not the norm. And yet the bulk of the work
that has been completed in mapping curriculum assumes precisely
this type of formalised epistemological structure — something that
is not likely to be achievable in the formalised mappings required
by the early days of the semantic web [6].

More flexible mappings are required, and attempts to address this
problem have emerged over the years. Most of these approaches
make use of (semi)automated methods to map curriculum into
some sort of taxonomy. For example, Gibson et al. [12] gave a sim-
ple demonstration of the fact that it is possible to map curriculum
documentation into widely understood educational constructs (e.g.
Bloom’s taxonomy) using simple stemming and text analysis. Sim-
ilarly, Xun et al. [44] made use of TF-IDF to map IT curriculum
documentation into two ontologies: the Skills Framework for the
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Information Age (SIFA) ontology, and Bloom’s taxonomy. Some-
what related, Pardos et al. [34] perform a detailed study of the
pathways students follow through Berkeley curriculum, building
a recommendation system that aims to help them choose a path
that completes course requirements faster. However, none of these
methods have been applied to the problem of RPL.

Thus NLP potentially has the necessary flexibility for addressing
the RPL problem, but has not been applied to the problem of map-
ping curriculum between institutions. Those methods that have
been applied are manual, and so resource intensive, leading to their
ongoing status as a research curiosity. How might we start to make
use of the best characteristics of both methods? Perhaps the best
developed field using NLP to model curriculum has arisen in map-
ping computer science curriculum into defined taxonomies, a topic
which we shall now explore.

2.1 Mapping computer science curriculum
The vast majority of work completed in applying techniques from
NLP to curriculum mapping has tended to concentrate upon Com-
puter Science (CS) curriculum. This is not just due to the necessary
expertise occurring predominantly among those who teach CS. Im-
portantly, the ACM and IEEE have provided a standard curriculum
series (i.e. a taxonomy of what should be taught in CS) for over 40
years, with a view towards helping faculty to design a curriculum
for their universities that fits into this broader professional context.
The Computer Science Curricula 2013 (CS2013) [3] and the Com-
puter Engineering Curricular Guideline (CE2016) [9] are examples
of these frameworks. Each represents a Body of Knowledge (BoK)
consisting of a set of knowledge areas (KAs), both of which contain
about ten more specialised knowledge units (KUs) represented by a
short document. A number of studies have explored this curriculum
structure, analysing its evolution in time [13, 28].

Closer to the problems associated with RPL, a body of work has
attempted to map the curricula from various education institutions
into the KAs defined by a range of CS frameworks. For example
Kawintiranon et al. [20] matched full curriculum documentation
(i.e. including course materials) for Computer Networks, Operating
Systems, and Systems Architecture subjects taught at a university
into the CE2016 framework. A dictionary was constructed by ex-
tracting KUs from various KAs in CE2016, and used to formulate
queries for various search APIs and so retrieve external documents.
These were processed using TF-IDF to obtain keyword matrices de-
scribing courses, and thence to compute association scores between
CE2016 and the university curricula. The same methods were later
used to demonstrate the relationships between the curricula for
5 institutions, showing a fair amount of similarity. An ingenious
approach was provided by Sekiya et al. [36], and further developed
in Matsuda et al. [29]. This work makes use of simplified, super-
vised Latent Dirichlet Allocation (ssLDA) to estimate the relative
weights of the Knowledge Areas (KAs) of CS2013 in various CS cur-
ricula. This method projects a subject syllabus to a point in the KA
space defined by CS2013, which works to relate the strength of the
connection between the syllabus and the corresponding KA. This
method was used to model a full curriculum pathway by finding the
centre of all points corresponding to a syllabus in a degree program.

The authors were able to demonstrate a range of geographic clus-
ters in the curricula of 50 leading computer science departments
from around the world. Similarly, Dai et al. [7] used Labelled Latent
Dirichlet Allocation (L-LDA) [35] to map curriculum into CS2013
at the level of KUs with the aim of enabling personalised learning
object recommendation in MOOCs. Despite their promise, the de-
pendency of these methods upon an ontology that is defined only
for computer science and engineering subjects restricts its utility
for the broader RPL problem.

In summary, NLP holds promise for mapping specific subsets
of curricula into identified taxonomies. However, the approaches
adopted to date are CS-centric. To our knowledge such approaches
are yet to be tested on other disciplinary curricula, and far less in
the open-ended use case where RPL potentially spans a university’s
entire curriculum. How can we scale solutions like this up? Doing
so requires a more general curriculum structure which can apply
across the entire range of fields taught in the education sector.

2.2 Skills taxonomies as a portable curriculum
representation

Scaling curriculum models such that they can effectively support
RPL across an institution, and eventually across a lifetime of learn-
ing, requires a generalisable representation of the skills and knowl-
edge that students gain during their education i.e. some sort of
universal ontology. And yet these have already failed to achieve
widespread adoption in many sectors where the Semantic Web had
aspirational use cases. Specifically, in the EdTech community the
workload required to map educational materials into a standard-
ised format makes ontologies prohibitively expensive to maintain.
Manual approaches seem to have consistently failed to achieve
widespread adoption.

Learning from the progress in CS curriculum mapping intro-
duced above, we have been investigating publicly available tax-
onomies which have been created to link skills, competences, qual-
ifications and occupations together into formal ontologies and tax-
onomies. For example, the European Skills, Competences, Qualifi-
cations and Occupations (ESCO) ontology3 was created through
manual mappings in an attempt to make qualifications portable
within the EU. A similar mapping, O*Net4 was created in the United
States, and ANZSCO5 has been generated for the Australia and New
Zealand context. These taxonomies each provide a basis for tag-
ging the skills taught in various educational domains. Critically, as
recruitment processes have increasingly shifted to web platforms
such as LinkedIn6, SEEK7 and Monster8 it has become possible to
collect data about occupations and the skills that are considered
essential for them at scale. This data has been used to populate
employability related ontologies by vendors such as Burning Glass
technologies9 who use a proprietary ontology for describing skills
and their relationship to various job roles. Models are starting to
emerge that seek to make use of these datasets to construct job

3https://ec.europa.eu/esco/portal/skill
4https://services.onetcenter.org/reference/
5http://www.abs.gov.au/ANZSCO
6https://www.linkedin.com/jobs/
7https://www.seek.com.au/
8https://www.monster.com/
9https://www.burning-glass.com
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search engines [33] and order ePortfolios over a lifetime of learning
[5]. However, we are not aware of any studies that have made use of
these frameworks to understand the curriculum of an educational
institution at scale, a gap that this work seeks to address. An initial
attempt that we made to automate RPL using the L-LDA approach
of Matsuda et al. [29] but using ESCO as a broader taxonomy than
the CS2013 taxonomy failed to converge. The taxonomy is large,
making that approach computationally expensive. Implementing
this method also requires substantial NLP expertise, which makes it
unlikely to be feasible across most institutions (which often do not
possess the necessary expertise in central units). In what follows
we discuss a series of experiments we have conducted to find a
more computationally tractable and easy to use approach.

3 PROOF OF CONCEPT EXPERIMENTS
In this section we discuss a series of experiments that we have
performed to explore the practicality of using NLP for mapping be-
tween subject descriptions from two different institutions UTS and
UNSW, chosen for their openly available curriculum documentation.
Acknowledging that there is no common international vocabulary
for referring to curriculum, we define the following conventions:

Course: A degree into which a student enrols (e.g. a Bachelor
of Science, or a Master of Information Technology).

Subject: A specific unit of study that a student undertakes
during a course (e.g. COMP2110, LANS and Networking).

We have built on a product released by Burning Glass (BG) to
explore the potential of “off the shelf” tools to assist with RPL. Of
particular relevance to our challenge, BG provides a tool that can
be used to tag curriculum structures (i.e. textual descriptions of
courses and subjects) using a proprietary skills ontology that they
curate. This ontology consists of 17,420 skills, organised into 663
coarser grained skill clusters, and mapped into 28 high level fields
of expertise. Thus, this ontology covers a broad range of skills,
making it a possible replacement of CS2013, capable of represent-
ing the entire curriculum of a university. In what follows we will
make use of the BG curriculum API which when called on a sub-
ject’s Title/Description data returns a JSON response with a list of
careers, potentialSkills, and skills that are considered likely
to be taught in that subject (as judged by a set of similarity scores
which are calculated using a proprietary algorithm — see Figure 2
for an example of this returned object).

How promising is this tool for tackling the RPL problem? Our
work was guided by the following two research questions (RQ):

RQ1: How can an off the shelf tool that tags curriculum using
a skills ontology be used to provide RPL mappings between
the curriculum structure of two universities?

RQ2: Which methods show the most promise for automating
RPL between two institutions?

We decided to restrict our analysis to two subsets of each institu-
tion’s offerings in the Information Technology (IT) and Medicine
domains, as two examples of substantially different curriculum
structures. This decision was both pragmatic, and considered the
business process by which RPL is usually awarded, where an appli-
cant’s record is manually examined in the context of an application
for entry to a specific degree program or study area (i.e. not an
entire institution’s curriculum). We consider this step justified, as

Table 1: The breakdown of Courses and Subjects offered
in IT and Medicine at the two different institutions whose
curriculum is examined here. Courses are further specified
with Undergraduate/Postgraduate (U/P) numbers.

Institution Field Courses U P Subjects

UTS IT 12 7 5 132
Medicine 31 8 23 295

UNSW IT 7 4 3 118
Medicine 24 11 13 185

it is likely that the bulk of RPL automation could be managed by
matching subject offerings across defined fields, however, we ac-
knowledge that there are situations for which mapping to fields
of study is likely to cause problems. For example, new fields, or
transdisciplinary degree subjects that aim to build skill sets not
well represented by traditional fields are likely to be poorly served
by this approach. This is a problem that we leave for future work.

Table 1 summarises the structure of the datasets examined from
the two institutions chosen for our study. Curriculum details were
selected from the detailed information provided in each institution’s
online handbook.10

3.1 Experiment 1: Using the Burning Glass
taxonomy in a common semantic space

Our first experiment explored the utility of using the BG ontology
as a basis state in a high dimensional semantic space [27], where
each skill listed in the BG ontology was taken as a basis vector for
an abstract “BG space”. Thus, the description for each subject was
sent to the BG content tagger, and the returned (sparse) skills list
was used to represent that subject as a vector in “BG space” (see
Figure 1). Modelling subjects from both UTS and UNSW using the
same representation enabled us to generate ranked lists of possible
matching subjects at the second institution for every subject offered
the first institution (and vice versa).

3.1.1 Method. A depiction of the process that we followed is given
in Figure 2 for a UTS subject: Software Architecture.11

STEP 1: First, we scraped the data for a given subject from the
institution’s handbook.

STEP 2: We sent the resulting subject name and its description
(which was usually about a paragraph long) to BG, which
returned a JSON response of skills weighted with a
“score” (ranging from 0–1).

STEP 3: We then mapped each subject into a “BG vector” by taking
the skills as an ordered list, and using score associated
with each skill as its projection in that basis direction.

STEP 4: The cosine similarity was then calculated between each
BG vector describing a subject offering at UTS and each
offered at UNSW. This was used to generate a ranked list of
closest matches for each subject from the other institution.

10For examples of the data used see http://www.handbook.uts.edu.au/ and
http://legacy.handbook.unsw.edu.au/general/2018/SSAPO/previousEditions.html.
11See http://handbook.uts.edu.au/subjects/48433.html for the handbook entry.
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Figure 1: A schematic representation of the method followed for experiment 1. Descriptions of subjects are mapped into a BG
space for each institution, each of which have the BG skills vectors as a shared basis. RPL candidates are found by ranking
subjects in the new institution using a cosine similarity score.

Figure 2: Mapping a subject (in this case Software Architec-
ture, offered by UTS) into a “BG vector”.

3.1.2 Results. Some example results are listed in Table 2, which
gives the mappings obtained for 4 subjects over the two specialties
(IT and Medicine) chosen for our study. The ranked lists below
the first subject at the top of Table 2 list the subjects at the sec-
ond institution which are evaluated by BG as most similar to that
subject. Any person with sufficient expertise in a field (in this case
IT or Medicine) can inspect the list provided and use the subject
titles in the list to determine which subjects are most likely to be
well aligned. For example, people with an IT background would
generally agree that the “Computer Systems Fundamentals” subject
offered by UNSW is likely to have more similarities with the “Soft-
ware Architecture” and “Programming Fundamentals” subjects that
are given as top ranked matches from UTS than the lower listed
subjects. (Although see the Evaluation section below for a more
rigorous exploration of this assertion.) Thus, this approach shows
some promise for developing a decision support tool that would
help a person tasked with awarding RPL to find subjects in their
institution which are likely matches for the subjects an incoming
student had studied at another one. This is a very encouraging
outcome given the simplicity of the approach adopted (which we
consider implementable at many institutions).

However, a number of weaknesses with the current approach
can also be observed in Table 2. For example, many of the subjects
in the ranked list are unlikely to be good matches for RPL purposes,
even if some overlap is evident in the content that they are likely
to teach. It is also apparent that many of these less related subjects
are ranked higher than subjects which are likely to be a far closer
match. Consider for example the high ranking of the “Algorithmic
Verification” subject in the second column. It is unlikely that this
subject is a closer match than e.g. “Software System Design and Im-
plementation” (ranked third) or “Computer Systems Fundamentals”
(ranked seventh). This problem emerges right at the point where
BG returns a list of skills along with their similarity weights.
Examining Table 3 provides us with an understanding of the under-
lying cause of this issue. We can see that there are cases where skills
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Table 2: Indicative subject mappings from UTS to ranked list of candidate subjects at UNSW (and vice versa). Rankings are
provided using the BG similarity scores.

Information Technology (IT) Medicine
Computer Systems Fundamen-
tals (UNSW)

Software Architecture (UTS) Advanced Epidemiology
(UNSW)

Foundations in Public Health
(UTS)

• Software Architecture 0.03 • Algorithmic Verification 0.61 • Foundations in Public Health 0.97 • Biostatistics 0.94
•Programming Fundamentals 0.01 • User Interface Design and Con-

struction
0.5 • Introduction to Public Health 0.97 • Public Health Capstone 0.93

• LANS and Routing 0.0 • Software as a Service Project 0.5 • Indigenous Public Health 0.96 • Ethics in Public Health 0.87
• Business Process and IT Strat-
egy

0.0 • Software System Design and
Implementation

0.48 • Fundamentals of Epidemiology
and Population Health

0.96 • Physical Activity and Nutrition
in International Contexts

0.86

• Internet Science 0.0 • Robotic Software Architecture 0.48 • Social Perspectives of Public
Health

0.96 • Public Health Optometry 0.85

• Security Fundamentals 0.0 • Software Engineering Funda-
mentals

0.47 • Health Project and Program
Management and Evaluation

0.95 • Epidemiology 0.84

• Software Defined Networks 0.0 • Computer Systems Fundamen-
tals

0.44 • Advanced Epidemiology 0.76 • Health Promotion 0.75

• Game Design Studio 2 0.0 • Design Project A’ 0.44 • Delivering Best Palliative Care
Any Place Every Time

0.67 • Public Health Policy and Pro-
grams

0.72

• Advanced Routing Principles 0.0 • Programming Challenges 0.41 • Epidemiology and Population
Health

0.65 • Introduction to Community
Eye Health

0.69

• Deep Learning and Convolu-
tional Neural Network

0.0 • Advanced Operating Systems 0.4 • Advanced Assessment and Di-
agnosis

0.19 • Principles of Prevention and
Public Health Surveillance

0.66

• Multilayer Switched Networks 0.0 • Data Services Engineering 0.39 • Evidence for Nursing 0.04 • Social Business for Public
Health

0.66

• Network Servers 0.0 • Software Construction: Tech-
niques and Tools

0.38 • Core Practice for Physiothera-
pists

0.03 • Influencing Health Beliefs and
Health Behaviours

0.61

• Cyber Security for Mobile Plat-
forms

0.0 • Object-Oriented Design & Pro-
gramming

0.38 • Sub-acute Rehabilitation 0.03 • Optometry, Medicine & Patient
Management

0.55

• IoT Security 0.0 • Computer Science Project 0.38 • Foundations of the Australian
Healthcare System

0.03 • Health Leadership 0.54

• Web Systems 0.0 • Management and Ethics 0.38 • Leading Change in Health Ser-
vices and Practice

0.03 • Community Eye Health Project 0.3

core to the content taught in a subject are ranked too low, with
skills that should not be considered closely related ranked above
them. To improve these results we need a method for giving higher
prominence to these core skills, a problem that we will return to in
Experiment 2.

Perhaps most problematic for our current results, note that in
Table 2, if we take the top listed UTS suggestion for “Computer
Systems Fundamentals” at UNSW (which is “Software Architec-
ture”), and perform the reciprocal mapping back to UNSW then
this brings up a ranked list which does not include the original
“Computer Systems Fundamentals” subject. The matches offered
are not symmetrical, a problem that could lead to quite different RPL
pathways if the current model was fully automated. This problem
forms the basis of one evaluation method we have utilised below
(see section 3.2.1).

One final observation concerns the low magnitude of the sim-
ilarity scores that have been obtained for subjects in some of the
lists. The subject descriptions at UNSW are often very short, which
means that few details are provided to inform students about what
is actually taught in that subject. Accordingly, our algorithm is
also provided with far fewer details that it can use to extract BG
skills, leading to poor matches into the curriculum offerings at UTS.
Thus we see some promise for the current approach as a quick way
of evaluating the quality of information provided about a subject
in various university handbooks, and encouraging institutions to
document their curriculum more completely.

3.2 Evaluation
Two methods have been used to evaluate our results.

3.2.1 Evaluation I — Recall for a reciprocal mapping. One evalua-
tion metric that we adopted considered the number of times that
a subject was returned in the top-5 list in a reciprocal mapping.
This is a useful metric because it demonstrates how likely a RPL
mapping between two institutions is likely to maintain integrity
(and so tests for the occurrence of the problem raised above in
section 3.1.2).

This evaluation proceeded in the following manner: (i) For any
one subject in a given institution, we recorded the top-5 subjects
returned as matches in the second institution. (ii) For each of those
matching subjects, a list of the top-5 subjects from the original
institutions were extracted. (iii) Any subject from the first insti-
tution that was matched in the reciprocal matching was recorded
as a true positive (𝑡𝑝). (iv) Any subject from the first institution
that was not matched in the reciprocal matching was recorded
as a false negative (𝑓 𝑛). This procedure gave the reciprocal recall
results (defined here as 𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝+𝑓 𝑛 ) recorded in Table 4. A
number of points are worth noting. Firstly, we note that the recall
scores are well above chance, but are not particularly good. The
approach is not yet accurate enough for automating RPL. Also, the
mappings from UTS to UNSW result in a substantially lower recall.
This result supports our observation above that the generally less
detailed subject descriptions provided by UNSWare a problem for
automating RPL, as information from UTS is consistently being lost
in the UTS → UNSW mapping.

3.2.2 Evaluation II — Human rankings. A second evaluation con-
sidered a subset of subjects mapped between institutions, asking
humans (n=6, the authors of this paper) to rank the likelihood that
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Table 3: Often we see responses returned from the BG curriculum API with a very low similarity score for skills taught in a
subject. This means the skills vectors constructed using these scores are not appropriately weighted to account for that skill.

Subject Skills and Scores
LANS and Routing {cisco: 0.99}, {wiring: 0.76}, {cisco switching: 0.17}, {routers: 0.16}, {hardware experience: 0.08}. . .
IoT Security {simulation: 0.97}, {middleware: 0.25}, {information systems: 0.04}, {transportation systems: 0.01}. . .
Internet Science {research: 0.95}, {teamwork/collaboration: 0.72}, {experiments: 0.03}, {creativity: 0.00}, {online research: 0.00}. . .
Evidence for Nursing {research: 0.92}, { clinical research: 0.03}, {patient care : 0.08}, {teaching: 0.01}, {public health and safety: 0.01}. . .
Advanced Epidemiology {public health and safety: 1.00}, {research: 0.96}, {epidemiology: 0.41}, {surveillance: 0.13}, {clinical research: 0.06}. . .

Table 4: Results ofmapping fromone institution to the other
and then back to the first institution. The reappearance of
the original subject in the top-5 results of the final mapping
was used to evaluate the reciprocal recall (𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙) of the
method explored in Experiment 1.

UTS→ UNSW n # mapped 𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙

IT 132 52 .394
Medicine 295 60 .203

UNSW→ UTS n # mapped 𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙

IT 118 53 .449
Medicine 185 73 .395

a matched IT subject at the second institution was a good match
for potentially corresponding subjects at the first.

The evaluation proceeded as follows: (i) A survey chart for the
human raters was prepared listing a set of subjects selected from
the handbooks of both UTS (5 subjects) and UNSW(3 subjects).
(ii) For each subject at a given institution, a list of the top-5 sub-
jects returned from our experiments was generated. This was then
augmented with up to 5 extra subjects to reach a baseline count
of at least 10. (iii) Raters evaluated each of the paired subjects for
their perceived similarity on a scale of 1–5 from ‘least relevant’
to ‘highly relevant’. An inter-rater reliability score 𝛼 = 0.465 was
calculated using Krippendorff’s measure of inter-rater reliability
[25]. This demonstrates some agreement between the raters, but
was not substantial (further illustrating the difficulty of the RPL
problem). We defined a score of 3 or higher as a judgement of a
subject as relevant (with anything less declared not relevant). (iv) A
ranked list of subjects was then generated by averaging the raters
responses. (v) The two ranked lists were then compared, and the
percentage agreement was calculated over lists of size 1, 3, and 5.
The results of this evaluation for Experiment 1 are listed in Table 5.

3.3 Experiment 2: Augmenting BG with a
concept based similarity model

This experiment was driven by the observation that BG tends to
consistently return skills that are highly representative of a specific
curriculum offering with a relatively low score (see Table 3 for some
examples). We sought to improve the relevance of the BG skills
returned for each subject.

3.3.1 WordNet enhanced skill based curriculum mapping (WESCM).
Exploring the results of Experiment 1, we observed a number of

limitations with the BG skills returned. Some skills were weighted
too highly and appear out of context — they are noisy. For exam-
ple, words such as wiring are highly weighted in subjects such as
“LANS and Routing”, and so override skills that are more closely
related to the subject (e.g. cisco switching). Secondly, there are
clusters of skills that tend to represent a particular job-market com-
petency but not necessarily all of them are representative of the sub-
ject learning outcome (SLO). For example, BG skills like software
development and software maintenance appear to be related in
a generic software engineering context but are less well related to
a more specific subject like “Software Architecture”. We believe
that these problems occur because the proprietary Burning Glass
model tends to give higher weights to the skills frequently appear-
ing in the training set, regardless of the curriculum content.12 That
is, BG appears to return skills that appear to be “corpus-specific”
rather than “content-specific”. Interestingly, in their study Mihalcea
et al. [30] suggest that for short texts knowledge based semantic
approach have a lower error rate when compared to corpus-based
approaches that use a vector based similarity model.

We developed the WESCM algorithm to augment the BG results
by improving the focus upon the content of subjects. We hypothe-
sised that key concepts outlined in the subject description should
also provide an indication of the skills that a student learns in that
subject, and that relevant BG skills should be weighted higher if
they have a strong semantic relation to key phrases in a subject
description. For example, in “LANS and Routing”, phrases like: “lo-
cal area network (LAN) hardware and physical layer standards”
should lead to a prioritization of the LAN term, as it is a key con-
cept occurring multiple times throughout the subject description.
In contrast, terms like “hardware” and “physical” should be de-
prioritized as they are less related to the key concepts in a LAN
based subject, despite being common in the BG corpus (which is de-
veloped by scraping worldwide job advertisements which will have
a higher frequency of these terms. Keyphrase extraction techniques
[11, 42, 43] provide a method for identifying the key concepts in a
subject description. We usedWordNet [32] to filter out these “noisy”
skills and assign new semantic weights to returned skills based on
the semantic distance between key concepts and skills.

We implemented the WESCM algorithm as follows:
STEP 1: Key sentence extraction. This step focuses on extracting

key sentences from a subject description using text summa-
rization. Inspired by the work of Mihalcea and Tarau [31],
we used the TextRank algorithm to extract the summary
sentences. This method of extractive summarization uses

12Although we cannot be sure as the BG algorithm is a proprietary black box.
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Table 5: Human ranking evaluation results for Experiments 1 and 2. The 1𝐵𝐺 , 1𝑊𝐸𝑆𝐶𝑀 , 3𝐵𝐺 , 3𝑊𝐸𝑆𝐶𝑀 , 5𝐵𝐺 , 5𝑊𝐸𝑆𝐶𝑀 metrics give
percentage agreement between the BG and WESCM predictions and the human raters for lists of size, 1, 3, and 5.

UTS → UNSW 1𝐵𝐺 1𝑊𝐸𝑆𝐶𝑀 3𝐵𝐺 3𝑊𝐸𝑆𝐶𝑀 5𝐵𝐺 5𝑊𝐸𝑆𝐶𝑀

48024 Applications Programming .000 .000 .333 .666 .200 .666
32524 LANS and Routing 1.000 1.000 .666 1.000 .600 .666

32146 Data Visualisation and Visual Analytics .000 .000 .000 .000 .000 .000
42028 Deep Learning and Convolutional Neural Networks .000 .000 .000 .000 .000 .222

48433 Software Architecture .000 .000 .000 .333 .200 .666
UNSW → UTS

COMP9021 Principles of Programming .000 1.000 .000 .666 .000 .400
COMP9311 Database Systems 1.000 1.000 .333 .666 .200 .400

COMP2511 Object-Oriented Design & Programming .000 1.000 .000 .333 .000 .400

a graph-based ranking algorithm which represents text as
a graph, where each sentence is a node. The sentence simi-
larity is determined by interconnecting the edges based on
the word token overlap between the sentences and finally
ranking the sentences based on overall weights [39, 45].
A threshold value of four was required as the minimum
number of sentences for a viable subject description.

STEP 2: Key-phrase extraction. The key sentences extracted from
the previous step are stripped of stop words and then
tokenized. Bi-grams and tri-grams are generated from the
tokenized terms which are then further filtered to only
select noun-phrases. (Noun phrases are assumed to be
a good way of extracting key concepts from a subject
description, as they tend to emphasise things that a subject
actually aims to teach.)

STEP 3: WordNet based skill-weight computation. This step fo-
cuses on augmenting the BG skills returned for a subject
with a new semantic weight using a WordNet based sim-
ilarity measure. To achieve this we use the Wu-Palmer
(𝑤𝑝)13 and the Path distance (𝑝𝑑)14 metrics to compute a
similarity score between each BG skill and the keyphrases
returned from STEP 2. The words from each of the BG
skill and keyphrase were mapped to the WordNet ontol-
ogy and the closest synonyms were obtained. Using the
resulting synonym set an average of the𝑤𝑝 and 𝑝𝑑 scores
was computed for each BG skill against each of the key-
phrases extracted. Finally, the max of the weight scores
(BG or WESCM based score) was computed as the over-
all semantic weight score. This enabled us to keep highly
weighted BG scores, but to reorder the lower ranked BG
skills, with ones that the WESCM algorithm rated highly
given a higher ranking.

STEP 4: Skill based curriculum mapping. In this step we followed
the procedure used in Section 3.1 to construct new “WESCM

13The Wu-Palmer (𝑤𝑝) similarity metrics work on three different factors considering
the two given word concepts,𝐶1 and𝐶2. The first two are the depth of each of the
concept which is denoted as 𝑑𝑒𝑝𝑡ℎ (𝐶1)/𝑑𝑒𝑝𝑡ℎ (𝐶2) , while the third is the depth of
least common subsume (𝐿𝐶𝑆) of the two word concepts [30]

𝑆𝑖𝑚𝑤𝑢 =
2 · 𝑑𝑒𝑝𝑡ℎ (𝐿𝐶𝑆)

𝑑𝑒𝑝𝑡ℎ (𝐶1) + 𝑑𝑒𝑝𝑡ℎ (𝐶2) . (1)

14The path distance is the measure of distance between two nodes in a hypernym
hierarchy (i.e. the number of nodes between two words [19]).

Table 6: Reciprocal recall (𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙) obtained for the new
method explored in Experiment 2. Results show substantial
improvement over Experiment 1 (see Table 4.)

UTS → UNSW n # mapped 𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙

IT 132 65 .492
Medicine 295 147 .498

UNSW → UTS n # mapped 𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙

IT 118 67 .568
Medicine 185 131 .708

vectors”, using them to re-map the curriculum of both in-
stitutions. We again computed the cosine similarity each
subject’s WESCM vector to those of the other institutions’
WESCM vectors, which resulted in new rankings for sub-
jects that could be considered as RPL candidates.

3.3.2 Evaluation. The same evaluation regimen was followed as
previously used for Experiment 1 (see Section 3.2). In Table 6, we see
that reciprocal recall is substantially improved in both directions.
The human rankings evaluation is given in Table 5, and again shows
a marked improvement in results.

We see that the enhanced mappings obtained using the WESCM
algorithm appear to rank more relevant subjects more highly. This
can be attributed to the concept-based similarity mapping of the BG
skills to the content of the subject. However, some subjects failed
to show a substantial improvement (e.g. Computer Architecture
was still mapped to irrelevant subjects like "Interaction Design").
This is because WordNet does not always necessarily identify the
semantic relationship in all fields of knowledge that might be taught
at a university. This is hardly surprising, The synsets provided by
WordNet are inherited from natural language. It is quite likely that
subject descriptions have a more unique structure, and so will have
some semantic relations that are still being lost. This brings us to a
consideration of future work.

4 DISCUSSION AND FUTUREWORK
While the results of our analysis in the previous section are promis-
ing, some important points must be noted for future work.
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Firstly, much more work on the evaluation of this approach
remains to be completed. The two methods so far proposed (recip-
rocal mappings and human evaluation) have only been attempted
for two fields (IT and Medicine) and only for a mapping between
two institutions. Furthermore, the human evaluation has only been
completed for a small section of subjects, and requires a rigorous
implementation with independent evaluators to remove any chance
of potential bias (although the protocol’s use of filler subjects was
designed to minimise this problem). The human evaluation has
concentrated upon IT topics because the team lacked the requisite
medical expertise to provide judgements of the resulting mappings.
This further evaluation also remains for future work. Furthermore,
the IRR value obtained between the human raters was relatively
low, demonstrating the difficulty of the RPL problem. More work
is required to establish a ground truth dataset that could be used
to evaluate our approach, a task that we reserve for the future.
Nonetheless, the contribution of a preliminary evaluation frame-
work provides the LAK community with an initial set of baseline
performance figures that can be used to judge improvements in
future work as it emerges. We also acknowledge that we are yet
to demonstrate that our approach works for fields beyond IT and
Medicine. Space limitations made it infeasible to present results
from more fields of study, but our initial exploratory analysis of
other curriculum mappings is promising.

We believe that our approach can be further improved by using
ESCO [8, 26] to extract skill-weight computations. Future work will
investigate the potential utility of enhancing our approach through
the use of a space constructed using this corpus. It seems likely
that adding this further complexity will integrate two descriptions
of skills that have different characteristics with the concept based
approach that was implemented using WordNet. It should also be
possible to extend this approach with richer information about
subjects. The descriptions used in the experiments reported here
are very short, but university handbooks often include assessment
details, learning outcomes and other rich information. Making use
of this richer curriculum information would likely improve the
robustness of our results, although there is likely to be a computa-
tional cost that arises with this extra processing, as well as a social
transformation that is required to get more institutions publicly
releasing their curriculum information.

In any event, the approach demonstrated here is highly promis-
ing, and we consider it quite likely that a decision support tool
implementing this approach could assist those working to award
RPL at large institutions, as long as curriculum information is made
publicly available and kept up to date.

It is also possible that this form of skills based curriculum ana-
lytics could help to rectify other curriculum problems. For example,
the same approach could potentially be used within one institution
to identify redundant subjects or overlapping curriculum compo-
nents. This would enable institutions to find places where students
might be dissatisfied with repeating content. Automatically flag-
ging such potential overlaps for further investigation would enable
more informed decisions to be made about whether subjects should
be redesigned. Similarly, this approach could find concept drift in
subjects, thus helping whole of course designers to discover places
where assumed content is not being taught etc. Our approach also
shows promise for evaluating the quality of subject descriptions,

identifying ones that are not sufficiently detailed and so potentially
unhelpful to students. For example, the results of Experiment 1 has
suggested that the UNSW subject descriptions were not as detailed
as they might be — a point that has been confirmed by further
investigation.

Finally, it is worth commenting upon our choice of a proprietary
set of black box tools offered by Burning Glass (BG) for this inves-
tigation. We made the decision to use the content tagger offered
by BG due to its simplicity and speed. This tool returns skills lists
quickly, making it feasible to rapidly label the curriculum offerings
of an entire institution. We believe it is possible to construct similar
semantic spaces from first principles using NLP and an open on-
tology (e.g. ESCO), but that approach would likely be slower, and
require far more expertise than most central teams possess. We
thus consider our off the shelf approach more practical and scalable.
Ideally services will start to emerge that perform the analysis we
have prototyped here, making this approach even easier to use.

5 CONCLUSIONS
As a pain point for many institutions, it is somewhat surprising
that more work on automating the mapping of curriculum into a
common format has not been completed by the Learning Analytics
and Knowledge (LAK) community. This paper has provided an
initial step towards automating a process (RPL) that is well known
to be onerous, resource intensive, and time consuming, and yet
is going to become increasingly necessary in an era of lifelong
learning.

Returning to the Research Questions that motivated our study,
we find that the discussion of Section 3 has provided us with a
number of insights. Firstly, in responding to RQ1, we have found
a simple way to make use of an off the shelf tool to construct
a semantic space that shows promise for supporting institutions
with the RPL process. Few institutions have central teams with
expertise in NLP and Information Retrieval, so finding a fairly
simple way in which this problem might be semi-automated is a
highly promising result. Implementing such an approach at scale
would require widely accessible curriculum documentation, but
is in principle possible. Better still, we could envisage a scenario
where institutions might choose to publicly share their curriculum
vectors in order to facilitate RPL. As we have explored RQ2, we have
started to learn more about which approaches show most promise
for supporting the automation of RPL. It seems most likely that a
hybrid approach will yield the best results, where a collection of
skills based ontologies are augmented with semantic information
about concepts and content taught in a subject.

In summary, this paper has provided the LA community with
a new avenue for supporting institutions as they seek to improve
their curriculum structures. We think that skills based curriculum
analytics shows considerable promise for delivering LA that pro-
vides rich insights about how we might improve the curriculum,
and hence the learning environments, of our students.
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